ON SOME:
(alpha, alpha star, alpha star star) continuous function

Nassir Ali Zubain
Wasit University
Wasit, Iraq
E-mail: nasseeral480@gmail.com
52001

Ali Khalaf Hussain
Wasit University
Wasit, Iraq
alhachamia@uowasit.edu.iq
52001

ABSTRACT. In this paper a new class of functions, such that semi α–continuous function is introduced for topological spaces, and the second type is semi α^*–continuous function and three class is semi α^{**}–continuous function. We have taken in our study this continuous homeomorphism function (bijective = injective + surjective), we introduce using practical examples of mathematical formulas and considering them as a direct application to the validity of the observations. We also, study the relationship between these concepts that we referred to at the beginning of the research.

Keywords: α-continuous function, α^*-continuous function, α^{**}-continuous function, α-open.

Introduction

T.Noiri.[1] introduce the concept of new (α-continuous function), according to the source we got" On –continuous function". And when we return to the basic concepts, we studied with Y.Yousif, R. Mejed. [3]. And introduce semi-open by N. Levine,[4] "Semi-open sets and semi-continuity in Topological space", also N. Levine, [5] "Generalized Closed Sets in Topology Rend.". So we have an important concept to contest the results with the previous concepts O. Njastad. [6] "On Some Classes of Nearly Open Sets" we studied some characteristics of these functions by using definitions Also, we introduce using practical examples of mathematical formulas and considering them as a direct application to the validity of the observations. We also, study the relationship between these concepts that we referred to at the beginning of the research.

Definition 1.1. [4]
A topological space (X, τ), and $M \subseteq X$ be named semi-open set. exists open set O, then $O \subseteq M \subseteq Cl O$.

Theorem 1.2. [4]
A topological space \((X, \tau), M \subseteq X\), and \(M\) be semi-open set if and only if \(M \subseteq \text{Cl Int } M\).

Proof:
If \(M\) is a semi-open set, and \(O\) is open set.
By defined \(O \subset M \subset \text{Cl } O\).
Then \(\text{Int } M \subset M\). Hence \(O \subset \text{Int } M \subset M \subset \text{Cl } O\),
Thus \(\text{Cl } O \subset \text{Cl Int } M \subset \text{Cl } M \subset \text{Cl } O\), \((\text{Cl } Cl O = \text{Cl } O)"
So \(M \subset \text{Cl } O\). Therefore \(M \subset \text{Cl Int } M\).

On the other hand, \(M\) is a semi-open set. Hence \(M \subset \text{Cl Int } M\).
Then \(\text{Int } M \subset M\). So \(\text{Int } M \subset M \subset \text{Cl } \text{Int } M\).
Therefore \(M\) it is semi-open set.

Example 1.3.
If \(X = \{4,1,8\}, T = \{\emptyset, \{4\}, \{1\}, \{4,1\}, X\}\), a topology defined on \(X\).
Thus \(\{4,8\}, \{8,1\}\) are semi-open.
However \(\{4,8\} \cap \{8,1\} = \{8\}\), it is not semi-open set.

Definition 1.4. [5]
a topological space \((X, \tau)\), too \(M \subseteq X\), be called semi-closed set, then a closed set \(C\) such that
\[\text{Int } C \subset M \subset C.\]

Theorem 1.5. [5]
a topological space \((X, \tau)\), then \(M \subseteq X\), \(M\) be semi-closed set, iff \(\text{Int } \text{Cl } M \subset M\).

Proof:
If \(M\) is a semi-closed set. Thus \(M^C\) is semi-open set.
So \(M^C \subset \text{Cl } \text{Int } M^C\). Then \(\text{Int } \text{Cl } M \subset M\).
Conversely, \(M\) is semi-closed set. Therefore \(\text{Int } \text{Cl } M \subset M\).
Wherefore \(M \subset \text{Cl } M\). Hence, \(\text{Int } \text{Cl } M \subset M \subset \text{Cl } M\) and \(\text{Cl } M\) is closed set.
As a result, \(M\) is semi-closed set

Corollary 1.6. [4]
The intersection of two semi-closed sets is semi-closed set in any topological space.

Proof:
Let \(N\) and \(F\) two semi-closed sets in \((X, \tau)\) be a topological space. then by definition semi-closed we get \(\text{Int } \text{Cl } N \subset N\), and \(\text{Int } \text{Cl } F\), therefore \(\text{Int } \text{Cl } N \cap \text{Int } \text{Cl } F \subset N \cap F\), but \(\text{Int } \text{Cl } N \cap \text{Int } \text{Cl } F = \text{Int } (\text{Cl } N \cap \text{Cl } F)\), then \(\text{Int } (\text{Cl } N \cap \text{Cl } F) \subset N \cap F\) and
\(\text{Int } (\text{Cl } N \cap \text{Cl } F) \subset \text{Int } (\text{Cl } N \cap \text{Cl } F)\), so \(\text{Cl } (N \cap F) \subset \text{Cl } N \cap \text{Cl } F\)
Thus \(\text{Int } (\text{Cl } (N \cap F)) \subset N \cap F\),
And from it, we find that \(N \cap F\) is semi-closed set

Example 1.7.
Let \(X = \{0,1,2,3\}, \tau = \{\emptyset, \{0\}, \{1\}, \{0,1\}, X\}\),
For a topology defined on \(X\). let \(M = \{0\}\),
then \(\text{Int } \{0,2,3\} = \{0\} \subset \{0\} \subset \{0,2,3\}\). thus \(M\) is semi-closed set.

Definition 1.8. [6]
Let \((X, T)\) topological space. And \(M \subseteq X\), \(M\) is called \(alpha\-open\) set,
If \(M \subseteq \text{Int } \text{Cl } \text{Int } M\) . and we symbolize the family of \(alpha\-open\) sets with the symbol \(\alpha \ O (X)\).
Theorem 1.9. [7]
A topological space \((X,T)\), and \(M \subset X\), be \(\alpha\)-open set iff. There exists an open set \(N\), therefore \(N \subset M \subset \text{Int} \ Cl \ N\).

Proof:
If \(M \subset \text{Int} \ Cl \ M\), obviously \(\text{Int} \ M \subset M\).
So \(\text{Int} \ M \subset \text{Int} \ Cl \ M\).
Then \(\text{Int} \ M\) is an open set. If \(\text{Int} \ M = N\). \((N \text{ is open set})\)
But, \(M\) be an \(\alpha\)-open set then an open \(N\).
since \(N \subset M \subset \text{Int} N\). Therefore \(N \subset \text{Int} \ M \subset \text{Int} N\).
Hence \(\text{Int} Cl N \subset \text{Int} Cl \text{Int} M \subset \text{Int} \ Cl \text{Int} Cl N\).
Then \(M \subset \text{Int} Cl N \subset \text{Int} \ Cl \text{Int} M\),
Thus \(M \subset \text{Int} \ Cl \text{Int} M\).

Lemma 1.10. [8]
A topological space \((X,\tau)\), if \(M\) is open, \(M \subset X\). And \(N\) is open set,
Thus \(M \cap N\) is \(\alpha\)-open.

Proof:
Hence \(M\) is \(\alpha\)-open set, since \(H\) is open.
Then \(H \subset M \subset \text{Int} \ Cl \ H\), and the intersect them by the open set \(N\),
We get \(N \cap H \subset N \cap M \subset N \cap \text{Int} \ Cl \ H\),
Which implies \((N \cap H) \subset (N \cap M) \subset \text{Int} \ Cl (N \cap H)\).
And \((N \cap \text{Cl} \ H \subset \text{Cl} (N \cap H))\), take interior for both sides,
We have \(\text{Int}(N \cap \text{Cl} \ H) \subset \text{Int} \ Cl (N \cap H)\),
Such that \(\text{Int} N \cap \text{Int} Cl H \subset \text{Int} \ Cl N \cap \text{Int} Cl H\),
howerver \(\text{Int} N = N\). Thus \(N \cap \text{Int} Cl H \subset \text{Int} Cl (N \cap H)\).
Since the intersection of two open sets is open. the set \(M \cap N\) is \(\alpha\)-open set.

Example 1.11.
If \(X = \{1,2,3,4\}\), \(T_x = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, X\}\), a topology define on \(X\).
\(T_x^a = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}, X\}\), let \(M = \{1,2,4\}\), then \(M\) is \(\alpha\)-open
But \(M \notin T_x\).

2 On Semi \((\alpha,\alpha^*,\alpha^{**})\) Continuous Function

Definition 2.1. [1]
Given \(f : X \rightarrow Y\) be a function , so \(f\) is called semi \(\alpha\)-continuous, if and only if each open set \(N\) of \(Y\), then \(f^{-1}(N)\) a semi \(\alpha\)-open set of \(X\).

Remark 2.2. [1]
Each \(\alpha^*\)-continuous is \(\alpha\)-continuous, and semi \(\alpha\)-continuous. Then the opposite is not correct in general as in the following case. moreover, we have the following implication.

Example 2.3.
If \(X = \{1,2,3,4\}\), \(T_x = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, X\}\),
\(T_x^a = T_x \cup \{1,2,4\}\), and express \(f : X \rightarrow X\), also \(f(x_1) = 1, f(x_2) = f(x_3) = 3, f(x_4) = 4\).
It is simply shown that \(f\) is \(\alpha\)-continuous, then is not \(\alpha^*\)-continuous,
Hence \(f\) is \(\alpha\)-continuous, on the other hand it is not \(\alpha^*\)-continuous.

Example 2.4.
If \(X = \{1,5,9\} \), \(T_x = \{\emptyset, \{1\}, \{5\}, \{1,5\}, X\} \), \(T_x^\alpha = T_x \),

semi \(\alpha \) \(O(X) = T_x^\alpha \cup \{(5,9), \{1,9\}\} \). Let \(f: X \rightarrow X \), \(f(\chi_1) = 1 \),
\(f(\chi_2) = f(\chi_3) = 5 \). It is easily seen that \(f \) is semi \(\alpha \)-continuous, but \(f \) is not \(\alpha^* \)-continuous, thus \(\{5\} \in T_x^\alpha \), however \(f^{-1}(\{5\}) = \{5,9\} \notin T_x^\alpha \)

Therefore \(f \) is semi \(\alpha \)-continuous, then it is not \(\alpha^* \)-continuous.

Remark: 2.5. [2]
The ideas of \(\alpha^* \)-continuity and semi \(\alpha^* \)-continuity independent as the following example shows.

Example 2.6.
Let \(X = \{1,2,3,4\} \), \(T_x = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, X\} \), \(T_x^\alpha = T_x \cup \{(1,2,4)\} \).

semi \(\alpha \) \(O(X) = T_x^\alpha \cup \{(2,3,4), \{1,3,4\}, \{2,3\}, \{2,4\}, \{1,4\}, \{1,3\}\} \). If \(Y = \{5,7,9\} \), \(T_y = \{\emptyset, \{5\}, \{7\}, \{5,7\}, X\} \), \(T_y^\alpha = T_y \), semi \(\alpha \) \(O(Y) = T_y^\alpha \cup \{(7,9), \{5,9\}\} \), define to \(f: X \rightarrow Y \). By \(f(\chi_1) = f(\chi_4) = 7 \), \(f(\chi_3) = 9 \), \(f(\chi_2) = 5 \). So \(f \) is semi \(\alpha^* \)-continuous. But it is not \(\alpha^* \)-continuous.

Because \(\{7\} \in T_y^\alpha \), however \(f^{-1}(\{7\}) = \{1,4\} \notin \) Then \(f \) is semi \(\alpha^* \) – continuous.

Then it is not \(\alpha^* \) – continuous.

Example 2.7.
Let \(X = \{1,2,3,4\} \), \(T_x = \{\emptyset, \{1\}, \{2\}, \{1,2\}\{1,2,3\}, X\} \).

\(T_x^\alpha = T_x \cup \{(1,2,4)\} \),

Define Identity function.

Thus \(f(\chi_1) = f(\chi_2) = 2 \), \(f(\chi_3) = 4 \), \(f(\chi_4) = 3 \).

semi \(\alpha \) \(O(X) = T_x^\alpha \cup \{(2,3,4), \{1,3,4\}, \{2,3\}, \{2,4\}, \{1,4\}, \{1,3\}\} \).

Since \(f \) is \(\alpha^* \)-continuous. But it is not semi \(\alpha^* \)-continuous, because \(\{1,3\} \in \) semi \(\alpha \) \(O(X) \). However \(f^{-1}\{1,3\} = \{4\} \notin \) semi \(\alpha \) \(O(X) \).

As a result, \(f \) is \(\alpha^* \)-continuous, then \(f \) is not semi \(\alpha^* \)-continuous.

Definition: 2.8. [1]
suppose \(f: X \rightarrow Y \), then \(f \) is termed semi \(\alpha^* \)-continuous If and only if each \(N \) semi \(\alpha \)-open set of \(Y \). Thus \(f^{-1}(N) \) be a semi \(\alpha \)-open set of \(X \).

Proposition: 2.9. [1]
If \(f: X \rightarrow Y \) is \(\alpha^* \)-continuous, open and bijective then \(f \) is semi \(\alpha^* \)-continuous.

Proof:
If \(f: X \rightarrow Y \) be \(\alpha^* \)-continuous, open and bijective.

Let \(A \) a semi \(\alpha \)-open set of \(Y \). and there containing \(\alpha \)-open set, say \(N \) then \(N \subseteq A \subseteq Cl N \). So \(f^{-1}(N) \subseteq f^{-1}(A) \subseteq f^{-1}(Cl(N)) = Cl(f^{-1}(N)) \) \(\) as \(f \) is open \(\) . However \(f^{-1}(N) \in T_x^\alpha \), \(\) as \(f \) is \(\alpha^* \)-continuous, \(\) Therefore \(f^{-1}(N) \subseteq f^{-1}(A) \subseteq Cl(f^{-1}(N)) \)

Thus \(f^{-1}(A) \in \) semi \(\alpha \) \(O(X) \), so \(f \) is semi \(\alpha^* \)-continuous.

Remark: 2.10.
Let \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \) are two functions, thus \(f \) as well \(g \) exist \(\alpha \)-continuous, Thus \(fog: X \rightarrow Z \), we don’t need to prove \(\alpha \)-continuous as the example shows.

Example 2.11.
If \(X = \{4,5,6,7\} \), \(T_x = \{\emptyset, \{6\}, \{4,6\}, \{4,5,6\}, X\} \),

\(T_x^\alpha = T_x \cup \{(5,6), \{6,7\}, \{5,6,7\}, \{4,6,7\}\} \),
And \(Y = \{0,1,2\} \), \(T_y \) = \{0,2\}, \(Y \) = \{0,2\}, \(\{1,2\} \},

Define \(f: X \to Y \), \(f (x_1) = f (x_2) = 0, f (x_3) = f (x_4) = 1 \).

Also \(g: Y \to \mathbb{Z}, g (y_1) = g (y_3) = 6, g (y_2) = 4 \).

Then \(f \) and \(g \) are \(\alpha \)-continuous, but \(gof: X \to X \),

Where \(gof (x_1) = gof (x_2) = 6, gof (x_3) = gof (x_4) = 4 \).

Then \(gof \) is not \(\alpha \)-continuous, since \(\{6\} \) be an open set of \(X \). But \((gof)^{-1} \{6\} \) = \{4,5\} be not \(\alpha \)-open set of \(X \). Therefore \(gof \) is not \(\alpha \)-continuous.

Definition. 2.12. \([1]\)

If \(f: X \to Y \) be a function, then \(f \) be called \(\text{semi } \alpha^{**} \)-continuous, iff for each \(N \) \(\text{semi } \alpha \)-open set in \(Y \), then \(f^{-1} (N) \) be open set in \(X \).

Theorem 2.13.

A function \(f: X \to Y \), then the following statements are equivalent,

I) \(f \) is \(\text{semi } \alpha^{**} \)-continuous.

II) \(f \) is \(\text{semi } \alpha^{**} \)-continuous at each point \(x \in X \).

Proof:

(I) \(\Rightarrow \) (II)

If \(f: X \to Y \) is a \(\text{semi } \alpha^{**} \)-continuous.

And \(x \in X, M \) be open set of \(Y \) containing \(f(x) \).

Then \(x \in f^{-1} (M) \). Also, \(f \) is \(\text{semi } \alpha^{**} \)-continuous,

So \(N = f^{-1} (M) \) is \(\text{semi } \alpha \)-open set in \(X \) containing \(x \).

Therefore \(f(N) \subset M \).

(II) \(\Rightarrow \) (I)

If \(f: X \to Y \) is \(\text{semi } \alpha^{**} \)-continuous for all points in \(X \).

And \(M \) open set in \(Y \), let \(x \in f^{-1} (M) \),

Since \(M \) is open set in \(Y \) containing \(f(x) \),

By (II), at hand is \(\text{semi } \alpha \)-open set \(N \) of \(X \) containing \(x \).

Then \(f(x) \in f(N) \subset M \), therefore \(N \subset f^{-1}(M) \),

Hence \(f^{-1}(M) = \cup \{N; x \in f^{-1}(M)\} \), Thus \(f^{-1}(M) \) is \(\text{semi } \alpha \)-open.

Example 2.14.
Given \(X = \{3,5,7\} \), \(T_x = \{\emptyset ,\{3\},\{5\},\{3,5\},X\} \), \(T_x^\alpha = T_x \), \(\text{semi } \alpha \ O (X) = T_x^\alpha \cup \{\{3\},\{5\},\{3,5\}\} \).

If \(f \) is \text{identity-function}.

Via \(f (x_1) = 5, f (x_2) = f (x_3) = 3 \),

So \(f \) is \(\text{semi } \alpha \)-continuous , then \(f \) is not \(\alpha^* \)-continuous.

Since \(\{5\} \in T_x^\alpha \) and \(f^{-1} (\{5\}) = \{3\} \in T_x^\alpha \),

Therefore \(f \) is \(\text{semi } \alpha^{**} \)-continuous, however, \(f \) is not \(\alpha^* \)-continuous.

Lemma: 2.15.

If \(f: X \to Y \) is an \text{continuous and } open \), so \(f^{-1}(N) \in \alpha \ O(X) \), For every \(N \in \alpha \ O \ Y \).

Proof:

Given \(N \in \alpha \ O \ Y \), thus \(N \subset \text{Int } \text{Cl } \text{Int } (N) \), and \(f \) is \text{continuous},

We have \(f^{-1}(N) \subset f^{-1}(\text{Int } \text{Cl } \text{Int } (N)) \subset \text{Int } f^{-1}(\text{Cl } \text{Int } N) \).

Also by \(f \) open, \(f^{-1}(\text{Cl } \text{Int } N) \subset \text{Cl } f^{-1}(\text{Int } N) \), [by if \(f: x \to Y \) is an open

Then \(f^{-1}(\text{Cl } A) \subset \text{Cl } f^{-1}(A) \), used for any \(A \subset Y \).

And since \(f \) is \text{continuous} , hence \(f^{-1}(\text{Int } N) \subset \text{Int } f^{-1} N \).
As a result \(f^{-1}(N) \subseteq \text{Int} \text{Cl} \text{Int} f^{-1}(N) \). Thus, \(f^{-1} N \in \alpha O(X) \). and the ease of finding it.

3 On a Homomorphism Function

Definition 3.1. [3]
If \(f: (X, \tau_X) \rightarrow (Y, \tau_Y) \) is a function, \(f \) is named **homeomorphism** if the injective, surjective, continuous and \(f^{-1} \) continuous.

Remark 3.2.
Clear that all homeomorphism function is always continuous. Then the opposite is not true as the example shows.

Example 3.3.
If \(f: (\mathbb{R}, \tau_{\mathbb{R}}) \rightarrow (\mathbb{R}, I); f(x) = x \), Identity function, for each \(x \in X \).
The function \(f \) is one-one, onto, continuous, but \(f^{-1} \) is not continuous.
So \(f \) is not homeomorphism.

Theorem 3.4. [3]
I- The bijective function \(f: (X, \tau_X) \rightarrow (Y, \tau_Y) \) is homeomorphism iff \(\text{Cl} (f^{-1}M) = f^{-1}(\text{Cl} M) \), s.t. \(M \subseteq Y \).
II- The bijective function \(f: (X, \tau_X) \rightarrow (Y, \tau_Y) \) is homeomorphism iff \(f^{-1}(\text{Int} M) = \text{Int}(f^{-1}M) \), such that \(M \subseteq Y \).

Proof:
(I)
Assume that \(\text{Cl} (f^{-1}M) = f^{-1}(\text{Cl} M) \), to show \(f \) is homeomorphism.
Since \(f \) is bijective, we must to prove \(f \) is continuous and \(f^{-1} \) is continuous. Thus \(\text{Cl} (f^{-1}M) = f^{-1}(\text{Cl} M) \).
Then \(\text{Cl}(f^{-1}M) \subseteq f^{-1}(\text{Cl} M) \), so \(f \) is continuous.
And \(f^{-1}(\text{Cl} M) \subseteq \text{Cl}(f^{-1}M) \), hence \(f^{-1} \) is continuous.
Similarly (by \(f \) is continuous iff \(f(\text{Cl} M) \subseteq \text{Cl}(f M), M \subseteq X \)), therefore \(f \) is continuous.
Conversely: assume that \(f \) is homeomorphism, to prove \(\text{Cl} (f^{-1}M) = f^{-1}(\text{Cl} M) \), since \(f \) is homeomorphism, then \(f, f^{-1} \) are continuous.
Thus \(\text{Cl}(f^{-1}M) \subseteq f^{-1}(\text{Cl} M) \) as well as \(f^{-1}(\text{Cl} M) \subseteq \text{Cl}(f^{-1}M) \)
As a result as \(\text{Cl} (f^{-1}M) = f^{-1}(\text{Cl} M) \).

(II):
assume that \(f^{-1}(\text{Int} M) = \text{Int}(f^{-1}M) \), to show \(f \) homeomorphism.
Since \(f \) is bijective, we need to verify \(f \) is continuous and \(f^{-1} \) is continuous.
So \(f^{-1}(\text{Int} M) = \text{Int}(f^{-1}M) \) then \(f^{-1}(\text{Int} M) \subseteq \text{Int}(f^{-1}M) \), thus \(f \) is continuous, by \(f \) is continuous iff \(f^{-1}(\text{Int} M) \subseteq \text{Int}(f^{-1}M), M \subseteq Y \).
And similarly \(f^{-1} \) is continuous, as result \(f \) is homeomorphism.
Conversely: assume that \(f \) is homeomorphism, show \(f^{-1}(\text{Int} M) = \text{Int}(f^{-1}M) \), so \(f \) and \(f^{-1} \) are continuous, then \(f^{-1}(\text{Int} M) = \text{Int}(f^{-1}M) \).

Definition 3.5. [3]
if known as two topological spaces \((X, \tau_x), (Y, \tau_y)\) are homeomorphic if there occurs a homeomorphism function from \((X, \tau_x) \to (Y, \tau_y)\) and symbolized by \((X, \tau_x) \cong (Y, \tau_y)\) or \((Y, \tau_y) \cong (X, \tau_x)\).

This means: \((X, \tau_x) \cong (Y, \tau_y)\) ifff occurs homeomorphism function \(f: (X, \tau_x) \to (Y, \tau_y)\).

Remark 3.6.

The relative \(\cong\) is the same relative on the family of topological space.

We must the relative \(\cong\) is reflexive, symmetric and transitive.

References

Baghdad University-Department of Mathematics (2020),76-82.

