Zubain, N., & Hussain, A. (2022). ON SOME: (alpha,alpha star,alpha star star) continuous function. Akkad Journal of Multidisciplinary Studies, 2(2), 31-37.

ON SOME: (alpha, alpha star, alpha star star) continuous function

Nassir Ali Zubain
Wasit University
Wasit, Iraq
E-mail:
nasseerali480@gmail.com
52001

Ali Khalaf Hussain Wasit University Wasit, Iraq

alhachamia@uowasit.edu.iq 52001

Received: April 2022 1st Revision: June 2022 Accepted: December 2022

JEL Classification: example D02, O17, P31

ABSTRACT. In this paper a new class of functions, such that semi α -continuous function is introduced for topological spaces, and the second type is semi α^* -continuous function and three class is semi α^{**} -continuous function. We have taken in our study this continuous homeomorphism function (bijective = injective + surjective). we introduce using practical examples of mathematical formulas and considering them as a direct application to the validity of the observations. We also, study the relationship between these concepts that we referred to at the beginning of the research.

Keywords: α -continuous function, α^* -continuous function, α^{**} -continuous function, α -open.

Introduction

T.Noiri.[1] introduce the concept of new (α -continuous function), according to the source we got" On —continuous function". And when we return to the basic concepts, we studied with Y.Yousif, R. Mejed. [3]. And introduce semi-open by N. Levine, [4] "Semi-open sets and semi-continuity in Topological space", also N. Levine, [5] "Generalized Closed Sets in Topology Rend.". so we have an important concept to contest the results with the previous concepts O. Njastad, [6] "On Some Classes of Nearly Open Sets" we studied some characteristics of these functions by using definitions Also, we introduce using practical examples of mathematical formulas and considering them as a direct application to the validity of the observations. We also, study the relationship between these concepts that we referred to at the beginning of the resear1. The basic concepts

Definition 1.1. [4]

A topological space (X, τ) , and $M \subseteq X$ be named **semi-open** set. exists open set $\mathbf{0}$, then $0 \subseteq M \subseteq Cl \ \mathbf{0}$.

Theorem 1.2. [4]

A topological space (X, τ) , $M \subseteq X$, and M be *semi-open* set if and only if $M \subset Cl$ Int M.

Proof:

If *M* is a semi-open set, and O is open set.

By defined $O \subset M \subset ClO$.

Then $Int M \subset M$. Hence $O \subset Int M \subset M \subset Cl O$,

Thus $Cl\ O \subset Cl\ Int\ M \subset Cl\ M \subset Cl\ O$, " $(Cl\ Cl\ O = Cl\ O)$ "

So $M \subset Cl\ O$. Therefore $M \subset Cl\ Int\ M$.

On the other hand, M is a semi-open set. Hence $M \subset Cl$ Int M.

Then $Int M \subset M$. So $Int M \subset M \subset Cl Int M$.

Therefore M it is semi-open set.

Example 1.3.

If $X = \{4,1,8\}$, $T = \{\emptyset, \{4\}, \{1\}, \{4,1\}, X\}$, a topology defined on X.

Thus $\{4,8\}$, $\{8,1\}$ are *semi-open*.

However $\{4,8\} \cap \{8,1\} = \{8\}$, it is not *semi*-open set.

Definition 1.4. [5]

a topological space (X, τ) , too $M \subseteq X$, be called **semi-closed** set, then a *closed* set C such that

Int $C \subset M \subset C$.

Theorem 1.5. [5]

a topological space (X, τ) , then $M \subseteq X$, M be semi-closed set, iff Int Cl $M \subset M$.

Proof:

If M is a semi-closed set. Thus M^{C} is semi-open set.

So, $M^{c} \subset Cl$ Int M^{c} . Then Int $Cl M \subset M$.

Conversely. so M is semi-closed set. Therefore $Int Cl M \subset M$.

Wherefore $M \subset Cl\ M$. Hence, Int $Cl\ M \subset M \subset Cl\ M$ and $Cl\ M$ is closed set.

As a result, M is semi-closed set

Corollary 1.6. [4]

The intersection of two *semi-closed* sets is *semi-closed* set in any *topological space*.

Proof:

Let N and F two semi-closed sets in (X,τ) be a topological space, then by definition semi-closed we get $Int\ Cl\ N\subseteq N$, and $Int\ Cl\ F$, therefore $Int\ Cl\ N\cap Int\ Cl\ F\subseteq N\cap F$, but $Int\ Cl\ N\cap Int\ Cl\ F=$

Int $(ClN \cap Cl F)$, then $Int(Cl N \cap Cl F) \subseteq N \cap F$ and

 $Int(Cl(N \cap F) \subseteq Int(Cl N \cap Cl F), \text{ so } Cl(N \cap E) \subseteq ClN \cap Cl F$

Thus $Int(Cl(N \cap F)) \subseteq N \cap F$,

And from it, we find that $N \cap F$ is semi-closed set

Example 1.7.

Let $X = \{0,1,2,3\}, \tau = \{\emptyset, \{0\}, \{1\}, \{0,1\}, X\},$

For a *topology* defined on *X*. let $M = \{0\}$,

hence $Int \{0,2,3\} = \{0\} \subset \{0\} \subset \{0,2,3\}$. thus *M* is *semi-closed set*.

Definition. 1.8. [6]

Let (X,T) topological space. And $M \subseteq X$, M is called α -open set.

If $M \subset Int \ Cl \ Int \ M$ and we symbolize the family of α -open sets with the symbol $\alpha \ O(X)$.

ON SOME: (alpha,alpha star,alpha star star) continuous function

Theorem 1.9. [7]

A topological space (X,T), and $M \subseteq X$, be α -open set iff. There exists an open set N, therefore $N \subseteq M \subseteq Int \ Cl \ N$.

Proof:

If $M \subset Int \ Cl \ Int \ M$. obviously $Int \ M \subset M$.

So $Int M \subset M \subset Int Cl Int M$.

Then Int M is an open set. If Int M = N. (N is open set)

But, M be an α -open set then an open N.

since $N \subset M \subset IntN$. Therefore $N \subset Int M \subset M \subset Int N$.

Hence $Int Cl N \subset Int Cl IntM \subset Int Cl M \subset Int Cl Int Cl N$.

Then $M \subset Int Cl N \subset Int Cl Int M$,

Thus $M \subset Int \ Cl \ Int \ M$.

Lemma 1.10. [8]

A topological space (X, τ) , if M is open, $M \subseteq X$. And N is open set,

Thus $M \cap N$ is α -open.

Proof:

Hence M is α -open set, since H is open.

Then $H \subset M \subset Int Cl H$, and the intersect them by the open set N,

We get $N \cap H \subset N \cap M \subset N \cap Int Cl H$,

Which implies $(N \cap H) \subset (N \cap M) \subset Int Cl(N \cap H)$.

And $(N \cap Cl H \subseteq Cl (N \cap H))$, take interior for both sides,

We have $Int(N \cap Cl H) \subseteq Int Cl (N \cap H)$,

Such that $IntN \cap Int \ Cl \ H \subseteq Int \ Cl \ N \cap Int \ Cl \ H$,

however Int N = N. Thus $N \cap Int Cl H \subseteq Int Cl (N \cap H)$.

Since the intersection of two *open sets is open*. the set $M \cap N$ is α -open set.

Example 1.11.

If $X = \{1,2,3,4\}$, $T_x = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, X\}$, a *topology* define on X. $T_x^{\alpha} = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,4\}, X\}$, let $M = \{1,2,4\}$, then M is α -open But $M \notin T_x$.

2 On Semi $(\alpha, \alpha^*, \alpha^{**})$ Continuous Function

Definition 2.1.[1]

Given $f: X \to Y$ be a function, so f is called **semi** α -continuous, if and only if each **open** set N of Y, then $f^{-1}(N)$ a **semi** α -open set of X.

Remark 2.2. [1]

Each α^* -continuous is α -continuous, and semi α -continuous. Then the opposite is not correct in general as in the following case. moreover, we have the following implication.

Example 2.3.

If $X = \{1,2,3,4\}$, $T_x = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, X\}$,

 $T_x^{\alpha} = T_x \cup \{1,2,4\}$, and express $f: X \to X$, also $f(x_1) = 1$, $f(x_2) = f(x_3) = 3$, $f(x_4) = 4$.

It is simply shown that f is α -continuous, then is not α^* -continuous,

Hence f is α -continuous, on the other hand it is not α^* -continuous.

Example 2.4.

ON SOME: (alpha,alpha star,alpha star star) continuous function

```
If X = \{1,5,9\}, T_x = \{\emptyset, \{1\}, \{5\}, \{1,5\}, X\}, T_x^{\alpha} = T_x, semi \ \alpha \ O(X) = T_x^{\alpha} \cup \{\{5,9\}, \{1,9\}\}, Let f: X \to X, f(x_1) = 1, f(x_2) = f(x_3) = 5. It is easily seen that f is semi \ \alpha-continuous, but f is not \alpha^*-continuous, thus \{5\} \in T_x^{\alpha}, however f^{-1}(\{5\}) = \{5,9\} \notin T_x^{\alpha}. Therefore f is semi \ \alpha-continuous, then it is not \alpha^*-continuous.
```

Remark: 2.5. [2]

The ideas of α^* -continuity and semi α^* -continuity independent as the following example shows.

Example 2.6.

let
$$X = \{1,2,3,4\}$$
, $T_x = \{\emptyset,\{1\},\{2\},\{1,2\},\{1,2,3\},X\}$, $T_x^{\alpha} = T_x \cup \{\{1,2,4\}\}$. $semi \ \alpha \ O(X) = T_x^{\alpha} \cup \{\{2,3,4\},\{1,3,4\},\{2,3\},\{2,4\},\{1,4\},\{1,3\}\}\}$. If $Y = \{5,7,9\}$, $T_y = \{\emptyset,\{5\},\{7\},\{5,7\},Y\}$, $T_y^{\alpha} = T_y$, $semi \ \alpha \ O(Y) = T_y^{\alpha} \cup \{\{7,9\},\{5,9\}\}$, define to $f: X \to Y$. By $f(x_1) = f(x_4) = 7$, $f(x_3) = 9$, $f(x_2) = 5$. So f is $semi \ \alpha^*$ -continuous. But it is not α^* -continuous. Because $\{7\} \in T_y^{\alpha}$, however $f^{-1}\{7\} = \{1,4\} \notin Then \ f$ is $semi \ \alpha^*$ - $continuous$. Then it is $semi \ \alpha^*$ - $semi \ \alpha^$

Example 2.7.

Let
$$X = \{1,2,3,4\}$$
, $T_x = \{\emptyset, \{1\}, \{2\}, \{1,2\}\{1,2,3\}, X\}$. $T_x^{\alpha} = T_x \cup \{1,2,4\}$,

Define Identity function.

Thus
$$f(x_1) = f(x_2) = 2$$
, $f(x_3) = 4$, $f(x_4) = 3$.
semi $\alpha O(X) = T_{\alpha}^{\alpha} \cup \{\{2,3,4\}, \{1,3,4\}, \{2,3\}, \{2,4\}, \{1,4\}, \{1,3\}\}.$

Since f is α^* -continuous. But it is **not** semi α^* -continuous, because $\{1,3\} \in semi \ \alpha \ O(X)$. However $f^{-1}\{1,3\} = \{4\} \notin semi \ \alpha \ O(X)$.

As a result, f is α^* -continuous, then f is not semi α^* -continuous.

Definition: 2.8.[1]

suppose $f: X \to Y$, then f is termed **semi** α^* -continuous. If and only if each N semi α -open set of Y. Thus $f^{-1}(N)$ be a **semi** α -open set of X.

Proposition: 2.9. [1]

If $f: X \to Y$ is α^* -continuous, open and bijective then f is semi α^* -continuous.

Proof:

If $f: X \to Y$ be α^* -continuous, open and bijective.

Let A a semi α -open set of Y. and there containing α -open set, say N then $N \subseteq A \subseteq Cl\ N$. So $f^{-1}(N) \subseteq f^{-1}(A) \subseteq f^{-1}Cl(N) = Cl\left(f^{-1}(N)\right)$ [as f is open]. However $f^{-1}(N) \in T_r^{\alpha}$, [as f is α^* -

continuous]. Therefore $f^{-1}(N) \subseteq f^{-1}(A) \subseteq Cl(f^{-1}(N))$

Thus $f^{-1}A$) \in semi α O(X), so f is semi α^* -continuous.

Remark: 2.10.

Let $f: X \to Y$ and $g: Y \to Z$ are two functions, thus f as well g exist α -continuous, Thus $f \circ g: X \to Z$, we don't need to prove α -continuous as **the example** shows.

Example 2.11.

If
$$X = \{4,5,6,7\}$$
, $T_x = \{\emptyset, \{6\}, \{4,6\}, \{4,5,6\}, X\}$, $T_x^{\alpha} = T_x \cup \{\{5,6\}, \{6,7\}, \{5,6,7\}, \{4,6,7\}\}$,

And
$$Y = \{0,1,2\}, T_y = \{\emptyset, \{2\}, Y\}, T_y^{\alpha} = T_y \cup \{\{0,2\}, \{1,2\}\}, T_y^{\alpha} = \{0,1,2\}, T_y^{\alpha} = \{0,1,2\},$$

Define
$$f: X \to Y$$
, $f(x_1) = f(x_2) = 0$, $f(x_3) = f(x_4) = 1$.

Also
$$g: Y \to Z$$
, $g(y_1) = g(y_3) = 6$, $g(y_2) = 4$.

Then f and g are α -continuous, but $gof: X \to X$,

Where
$$gof(x_1) = gof(x_2) = 6$$
, $gof(x_3) = gof(x_4) = 4$.

Then gof is not α -continuous, since $\{6\}$ be an open set of X. but $(gof)^{-1}\{6\} = \{4,5\}$ be not α -open set of X. Therefore gof is not α -continuous.

Definition. 2.12. [1]

If $f: X \to Y$ be a function, then f be called **semi** α^{**} -continuous, iff for each N **semi** α - open set in Y, then $f^{-1}(N)$ be open set in X.

Theorem 2.13.

A function $f: X \to Y$, then the following statements are equivalent,

- I) f is semi α^{**} -continuous.
- II) f is semi α^{**} -continuous at each point $x \in X$,

Proof:

$$(I) \rightarrow (II)$$

If $f: X \to Y$ is a semi α^{**} -continuous.

And $x \in X$, M be open set of Y containing f(x).

Then $x \in f^{-1}(M)$. Also, f is semi α^{**} -continuous,

So $N = f^{-1}(M)$ is semi α -open set in X containing x.

Therefore $f(N) \subset M$.

 $(II)\rightarrow (I)$

If $f: X \to Y$ is semi α^{**} -continuous for all points in X.

And M open set in Y, let $x \in f^{-1}(M)$,

Since M is open set in Y containing f(x).

By (II), at hand is semi α -open set N of X containing x.

Then $f(x) \in f(N) \subseteq M$, therefore $N \subseteq f^{-1}(M)$,

Hence $f^{-1}(M) = \bigcup \{N; x \in f^{-1}(M)\}\$, Thus $f^{-1}(M)$ is *semi* α -open.

Example 2.14.

Given $X = \{3,5,7\}$, $T_x = \{\emptyset, \{3\}, \{5\}, \{3,5\}, X\}$, $T_x^{\alpha} = T_x$, $semi \ \alpha \ O(X) = T_x^{\alpha} \cup \{\{3,7\}, \{5,7\}\}$,

If f is identity-function.

Via
$$f(x_1) = 5$$
, $f(x_2) = f(x_3) = 3$,

So f is semi α -continuous, then f is not α^* -continuous

Since $\{5\} \in \tau_r^{\alpha}$, and $f^{-1}(\{5\}) = \{3\} \in T_r^{\alpha}$,

Therefore f is semi α^{**} -continuous, however, f is not α^{*} -continuous.

Lemma: 2.15.

If $f:X\to Y$ is an continuous and open , so $f^{-1}(N)\in\alpha$ O(X), For every $N\in\alpha$ O(Y).

Proof.

Given $N \in \alpha O(Y)$, thus $N \subseteq Int Cl Int(N)$, and f is continuous,

We have $f^{-1}(N) \subseteq f^{-1}(Int \ Cl \ Int \ N) \subseteq Int \ f^{-1}(\ Cl \ Int \ N)$,

Also by f open, $f^{-1}(Cl Int N) \subseteq Cl f^{-1}(Int N)$, [by if $f: x \to Y$ is an open

Then $f^{-1}(Cl A) \subseteq Cl f^{-1} A$, used for any $A \subseteq Y$.

And since f is continuous, hence f^{-1} (Int N) \subseteq Int f^{-1} N.

As a result $f^{-1}(N) \subseteq Int \ Cl \ Int \ f^{-1}(N)$, Thus, $f^{-1} \ N \in \alpha \ O(X)$. and the ease of finding it.

3 On a Homomorphism Function

Definition 3.1. [3]

If $f:(X,\tau_x) \to (Y,\tau_y)$ is a function, f is named **homeomorphism** if the injective, surjective, continuous and f^{-1} continuous.

Remark 3.2.

Clear that all *homeomorphism* function is always *continuous*. Then the opposite is not true as the example shows.

Example 3.3.

If $f: (\mathbb{R}, \tau_u) \to (\mathbb{R}, I)$; f(x) = x, Identity function, for each $x \in X$. The function f is one-one, onto, continuous, but f^{-1} is not continuous. So f is not homeomorphism.

Theorem 3.4. [3]

- I- The bijective function $f:(X,\tau_x) \to (Y,\tau_y)$ is homeomorphism iff $Cl(f^{-1}M) = f^{-1}(ClM)$, s.t. $M \subseteq Y$.
- II- The bijective function $f:(X,\tau_x) \to (Y,\tau_y)$ is homeomorphism iff $f^{-1}(Int\ M) = Int(f^{-1}M)$, such that $M \subseteq Y$.

Proof:

(I)

Assume that $Cl(f^{-1}M) = f^{-1}(ClM)$, to show f is homeomorphism, Since f is bijective, we must to prove f is continuous and f^{-1} is continuous. Thus $Cl(f^{-1}M) = f^{-1}(ClM)$,

Then $Cl(f^{-1}M) \subseteq f^{-1}(ClM)$, so f is continuous.

And $f^{-1}(ClM) \subseteq Cl(f^{-1}M)$, hence f^{-1} is continuous. similarly

(by f is continuous iff $f(Cl M) \subseteq Cl(f M), M \subseteq X$), therefore f is continuous.

Conversely: assume that f is homeomorphism, to prove $Cl(f^{-1}(M)) =$

 f^{-1} (Cl M), since f is homeomorphism, then f, f^{-1} are continuous,

Thus $Cl(f^{-1}M) \subseteq f^{-1}(ClM)$ as well as $f^{-1}(ClM) \subseteq Cl(f^{-1}M)$

As a result as $Cl(f^{-1}M) = f^{-1}(ClM)$.

(II):

assume that $f^{-1}(Int\ M) = Int(f^{-1}\ M)$, to show f homeomorphism.

Since f is bijective, we need to verify f is continuous and f^{-1} is continuous.

So $f^{-1}(IntM) = Int(f^{-1}M)$ then $f^{-1}(IntM) \subseteq Int(f^{-1}M)$, thus f is

continuous, by $[f \text{ is } continuous \text{ iff } f^{-1}(IntM) \subseteq Int (f^{-1}M), M \subseteq Y]$

And similarly f^{-1} is continuous, as result f is homeomorphism.

Conversely: assume that f is *homeomorphism*, show $f^{-1}(IntM) = Int(f^{-1}M)$, so f and f^{-1} are continuous, then $f^{-1}(IntM) = Int(f^{-1}M)$.

Definition 3.5. [3]

if known as two *topological spaces* (X, τ_x) , (Y, τ_y) are *homeomorphic* if there occurs a *homeomorphism* function from $(X, \tau_x) \to (Y, \tau_y)$ and symbolized by $(X, \tau_x) \cong (Y, \tau_y)$ or $(Y, \tau_y) \cong (X, \tau_x)$.

This means: $(X, \tau_x) \cong (Y, \tau_y)$ iff occurs homeomorphism function $f: (X, \tau_x) \to (Y, \tau_y)$.

Remark 3.6.

The relative \cong is the same relative on the family of topological space.

We must the relative \cong is *reflexive*, *symmetric* and *transitive*.

References

- T. Noiri, "On α -continuous Functions", Cassopis Pest Mat. 109 (1984), PP (118-126).
- S.N. Maheshwari, "Some new separation axioms" Ann. Soc. Sci. Bruxelks, Ser.1.,vol.89,PP.395-402,

1975.

Y.Y.Yousif, R. N. Meijed. "General Topology" College of Education for pure sciences-Ibn AL-Haitham

Baghdad University-Department of Mathematics (2020),76-82.

N. Levine, "Semi-open sets and semi-continuity in Topological space" Amer. Math. Monthly 70(1963),

36-41.

N. Levine, "Generalized Closed Sets in Topology Rend." Del. Circ. Math. Di Palermo, vol. 19, no. 1. PP

89-96, (1970).

- O. Njastad, "On Some Classes of Nearly Open Sets" Pacific J. Math., 15(1965), PR(961-970).
- D. Jankovic, J. Reilly "On semi separation properties, Indian J. Pure Appl. Math., 16(1985), 957-964.
- [8] A.S. Mashhour, J.A. Hasanein, and S.N.EL-Deeb, α Continuous and α -open mappings", Acta.

Math. Hunger. Vol.41(1983), no.3-4 P 213-218.